A New Acyclic Sesquiterpene Oligoglycoside from Pericarps of Sapindus mukurossi

Jie Ru SUN^{1,2}*, Kong Chang CHENG¹, Tie Yin PAN¹, Xin Mei SI¹

¹East China University of Science and Technology, Shanghai 200237 ²Shanghai Whitecat Company Ltd., Shanghai 200231

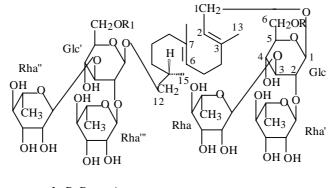
Abstract: A new acyclic sesquiterpene oligoglycoside, named mukurozioside **A**, was isolated from pericarps of *Sapindus mukurossi*. On the basis of chemical and spectral evidence, the structure of mukurozioside **A** has been established as: 11(S)-2, 6(E, E)-dodecadiene-3, 7, 11-trimethyl-1, 12-diol-1,

12-bis-O- -L-rhamnopyranosyl- $(1\rightarrow 2)$ -[-L-rhamnopyranosyl- $(1\rightarrow 3)$]-6-O-acetyl- -D-Glucopyranoside (1).

Keywords: Sapindus mukurossi, sesquiterpene oligoglycoside, mukurozioside A.

The pericarps of *Sapindus mukurossi* (Chinese name: Wuhuanzi) is used as a source of natural surfactant and an expectorant in traditional chinese medicine. From the pericarps of this plant, seven saponins and four sesquiterpene oligoglycosides were reported previously¹⁻³. Recently, from this source, we have isolated a new acyclic sesquiterpene oligoglycoside, named mukurozioside **A** (1).

Mukurozioside A (1), an amorphous powder, [$]_{D}^{25}$ -65.53 (c 1.0, MeOH), has a molecular formula $C_{55}H_{92}O_{30}$ determined from its ESI-MS (m/z 1255 [M+Na]⁺) and ¹³CNMR data. Its IR showed characteristic absorptions at 3415 (OH), 1727 (ester) and 1640 cm⁻¹ (C=C). The ¹HNMR and ¹³CNMR of **1** indicated the presence of two trisubstituted double bonds [two olefinic protons: H 5.32, 5.03 (each 1H, t, J=6Hz); two olefinic methyls: H 1.61, 1.51 (each 3H, s) and four olefinic carbons: C 121.1, 125.0, 136.4, 142.3], a secondary methyl (0.82, 3H, d, J=6Hz) and two acetyl groups [$_{\rm H}$ 2.01 (6H, s) and _C 21.1, 20.8; 172.7, 172.7]. Its spectral features suggested **1** to be an acyclic sesquiterpene oligoglycoside. Comparison of the ¹HNMR and ¹³CNMR of 1 with those of mukurozioside II $a(2)^2$ indicated that 1 has the same aglycone, mukurozidiol², as 2. Comparing the 13 CNMR of the aglycon part of 1 with that of mukurozidiol, the downfield shifts of C1 and C12 (6.9 and 8.1 ppm) indicated that C1 and C_{12} of aglycone of 1 were glycosylated. Acid hydrolysis of 1 produced sugar components identified as D-glucose and L-rhamnose (1:2) based on GC/MS analysis. Comparison of the ¹³CNMR signals of the sugar parts of 1 (Table 1) with those of 2^2 revealed that 1 has the same sugar parts as 2 except for the presence of two acetyl groups.


Jie Ru SUN et al.

	aglycon moiety				sugar moiety						
С		С		С	Glc	Glc'	Rha	Rha'	Rha''	Rha'''	
1	66.3	9	26.3	1	101.2	103.2	103.7	103.1	103.7	102.5	
2	121.1	10	34.4	2	80.3	79.2	72.2	72.2	72.2	72.2	
3	142.3	11	34.7	3	87.9	88.3	72.1	72.1	72.1	72.1	
4	40.7	12	76.6	4	70.1	70.1	73.5	73.5	73.5	73.5	
5	27.3	13	16.1	5	77.5	77.6	70.7	70.5	70.7	70.5	
6	125.0	14	16.1	6	62.5	62.5	18.3	18.3	18.0	18.0	
7	136.4	15	17.4	CH ₃	21.1	20.8					
8	41.1			C=O	172.7	172.7					

Table 1 13 CNMR data of compounds 1 (CD₃OD, in ppm)

On the basis of the assigned protons of **1**, its ¹³CNMR resonances of each sugar unit were identified by HMQC and further confirmed by HMBC. From the HMBC spectrum of **1**, cross peaks were observed between C₁ (66.3) and H_{Glc1} (4.38, d, J=7.7Hz), C_{Glc2}(80.3) and H_{Rha'1}(4.92), C_{Glc3}(87.9) and H_{Rhal}(4.90), C₁₂(76.6) and H_{Glc'1}(4.33, d, J=7.6 Hz), C_{Glc2}(79.2) and H_{Rha''1} (5.01), C_{Glc'3}(88.3) and H_{Rha''1} (4.90), C _{172.7} (C=O of acetyl) and H_{Glc6} (3.69; 3.84), C _{172.7} (C=O of acetyl') and H_{Glc'6} (3.69; 3.84). Thus, mukurozioside **A** was determined to be 11(S)-2, 6(E, E)-dodecadiene-3, 7, 11-trimethyl -1,12-diol-1,12-bis-O- -L-rhamnopyranosyl-(1→2)-[-L-rhamnopyranosyl-(1→3)]-6-O-acetyl-β-D-glucopyranoside(**1**).

Figure 1 Structure of mukurozioside A (1) and mukurozioside II a (2)

1 R, R₁ = Ac **2** R, R₁ = H

References

- 1. H. Kimata, T. Nakashima, S. Kokubun, K. Nakayama, Y. Mitoma, T. Kitahara, N. Yata, O. Tanaka, *Chem. Pharm. Bull.*, **1983**, *31* (6), 1998.
- 2. R. Kasai, H. Fujino, T. Kuzuki, W. H. Wong, C. Goto, N. Yata, O. Tanaka, F. Yasuhara, S. Yamaguchi, *Phytochemistry*, **1986**, 25 (4), 871.
- 3. I. Azhar, K. Usmanghani, S. Perveen, M. S. Ali, V. U. Ahmad, Pak. J. Pharm. Sci., 1993, 6 (2), 71.

Received 13 September, 2001